Routing protocols
An "internet" is a group of interconnected networks. The Internet, on the other hand, is the collection of networks that permits communication between most research institutions, universities, and many other organizations around the world. Routers within the Internet are organized hierarchically. Some routers are used to move information through one particular group of networks under the same administrative authority and control. (Such an entity is called an autonomous system.) Routers used for information exchange within autonomous systems are called interior routers, and they use a variety of interior gateway protocols (IGPs) to accomplish this end. Routers that move information between autonomous systems are called exterior routers; they use the Exterior Gateway Protocol (EGP) or Border Gateway Protocol (BGP).
Routing protocols used with IP are dynamic in nature. Dynamic routing requires the software in the routing devices to calculate routes. Dynamic routing algorithms adapt to changes in the network and automatically select the best routes. In contrast with dynamic routing, static routing calls for routes to be established by the network administrator. Static routes do not change until the network administrator changes them.
IP routing tables consist of destination address/next hop pairs. This sample routing table from a Cisco router shows that the first entry is interpreted as meaning "to get to network 34.1.0.0 (subnet 1 on network 34), the next stop is the node at address 54.34.23.12":
R6-2500# show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
34.0.0.0/16 is subnetted, 1 subnets
O 34.1.0.0 [110/65] via 54.34.23.12, 00:00:51, Serial0
54.0.0.0/24 is subnetted, 1 subnets
C 54.34.23.0 is directly connected, Serial0
R6-2500#
As we have seen, IP routing specifies that IP datagrams travel through an internetwork one router hop at a time. The entire route is not known at the outset of the journey. Instead, at each stop, the next router hop is determined by matching the destination address within the datagram with an entry in the current node's routing table. Each node's involvement in the routing process consists only of forwarding packets based on internal information. IP does not provide for error reporting back to the source when routing anomalies occur. This task is left to another Internet protocol—the Internet Control Message Protocol (ICMP).
ICMP performs a number of tasks within an IP internetwork. In addition to the principal reason for which it was created (reporting routing failures back to the source), ICMP provides a method for testing node reachability across an internet (the ICMP Echo and Reply messages), a method for increasing routing efficiency (the ICMP Redirect message), a method for informing sources that a datagram has exceeded its allocated time to exist within an internet (the ICMP Time Exceeded message), and other helpful messages. All in all, ICMP is an integral part of any IP implementation, particularly those that run in routers.
Selasa, 03 Juni 2014
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar